

INTERNATIONAL SCHOLAR JOURNAL

MELATONIN AND SESAMOL EVALUATION FOR RADIATION INJURY

Parveen Nahid*, Gyaltsen Dhondup, Singh Chetan, Suman Kumar Sunil

Guru Nanak College of Pharmaceutical Sciences, Dehradun, India

nahidparveen373@gmail.com*

ABSTRACT

The radiation, specifically the Infra Red (IR) has high penetration power and can penetrate human body to treat/destroy any abnormal/normal tissue. IR (Gamma radiation, X-ray) has been used medically for diagnostic and therapeutic purposes, e.g., PET-CT, CT scan, MRI and cancer radiotherapy. Gamma radiation is known to cause high amount of damage to biomolecules as protein, fats, carbs and DNA. Most consequences of IR are due to its damaging effects on genetic material of highly dividing cell, leading to growth arrest (cell cycle arrest), apoptosis, necrosis and tissue degeneration. The extension of effects are manifested as mucositis, skin erythema, rashes, hair defoliation, severe pancytopenia, neutropenia, thrombocytopenia, Malabsorption, GI bleeding, immunosuppression, secondary infections, and cancer. Melatonin is a direct free radical scavenger as well as indirect antioxidant. Melatonin shows its effects by stimulating antioxidant enzymes and suppressing prooxidative enzymes activity. Additionally, Melatonin also has antitumor and radiosensitizing properties. Therapy with Melatonin may prevent tumor progression. Thus, it seems that, in the future, melatonin may improve the therapeutic gain in radiation oncology treatments. Thermal denaturation studies on irradiated calf thymus DNA were also carried out with sesamol and melatonin. Sesamol demonstrated greater radioprotective efficacy in both plasmid DNA and calf thymus DNA. It is proposed that the greater radioprotective efficacy of sesamol could be due to its greater capacity for scavenging of free radicals compared to melatonin. The results will be helpful in understanding the mechanisms and development of sesamol as a radioprotector.

Keywords: Antioxidant, Antitumor, Free radicals, Melatonin, Radiation, Radioprotective, Sesamol.

INTRODUCTION

Radiation is the spectrum of energy that travels through space and can be divided into two types: ionizing and non-ionizing. Ionizing radiation (IR) is called so, because it ionizes the medium through which it travels. Ionizing radiation when travels through body it ionizes biomolecules that are present throughout cells and tissues (e.g., X-ray). Like X-rays, radio waves, radar, radiant heat, and visible light (non-ionizing radiation) are forms of electromagnetic radiation. They all have the same velocity, c, but they have different wavelengths and, therefore, different frequencies. However, the ionizing radiation have shorter wavelengths and consequently, a larger photon energy. As a result, X- and -rays can break chemical bonds and produce biologic effects. [1].

The discovery of IR basically, X-ray is credited to German physicist Wilhelm Conrad Rontgen in 1895 and subsequent discoveries in 1896 by Becquerel on natural radioactivity, and Curie in 1898 found radioactive radium have marked golden era of physics. But soon, Edison, Tesla, and Gubbe reported radiation-injury in eyes and skin in 1896 [2]. The iconic image of bone, accidentally taken by X-ray, excited medical community and unaware of the threat, rapid developments led to technology (X-ray machine) and rapidly spread from research laboratory to diagnostic laboratory in hospitals and till today is main diagnostic tool for imaging. In 1902, the first case of radiation induced cancer was reported in the hand of a radiologist. Soon, many cases of radiation injury were reported like blistering, skin erythema, ulceration, leukemia [3].

The radiation exposure thus, can be divided into planned/therapeutic exposure (medical and diagnostic) and accidental exposure or intentional exposure to general public and armed forces (nuclear bomb, nuclear accident). Nuclear and radiation accident is defined by the International Atomic Energy Agency (IAEA) as "an event that has led to significant consequences to people, the environment or the facility" [4]. The nuclear accidents have occurred in past as in Hiroshima Nagasaki in 1945 in Japan, later in Chernobyl (1986), Fukushima (2011), and Mayapuri (2010) incident in Delhi. The prime example of a "major nuclear accident" is Chernobyl disaster in 1986 in which a reactor core was damaged and significant amounts of radioactive isotopes were released. Different scenarios such as nuclear explosion, accidents involving nuclear reactor, accidental radioactive spillage, nuclear attack, etc warrants the exposure to civilians, cleanup workers, first responders and armed forces [5,6].

The health effects due to IR may be classified as stochastic effects and deterministic effects. Stochastic effects occur by chance and may occur at any dose of radiation exposure, while deterministic effects occur after a minimum threshold exposure to radiation that may vary from person to person [7]. Whole body irradiation (WBI), at significant doses, leads to the onset of acute radiation syndrome (ARS) [8]. ARS is defined by the National Council on Radiation Protection and measurements as a "range of signs and symptoms that reflect severe damage to specific organ systems and that can lead to death within hrs or up to several months" [9]. Exposure to high dose of radiation causes huge adverse effects on health, as anemia, immunosuppression (hematopoietic syndrome), diarrhoea, vomiting, GI bleeding (gastrointestinal

syndrome), and dizziness, disorientation, neurovascular problems (Neurovascular syndrome). All sub-syndrome, i.e., hematopoietic, gastrointestinal and cerebrovascular, are combinedly known as ARS. ARS is main cause of death due to accidental radiation exposures. [10-12].

The clinical manifestation of ARS depends on the absorbed dose. Hematopoietic system is most sensitive, gastrointestinal is affected at higher dose and subsequently cerebrovascular involvement followed by multi organ dysfunction. The manifestations and pathology associated with ARS involve interactions between radiosensitive organ systems and thus form a complex disease. Higher doses of irradiation may result in combination of all sub-syndromes leading to ARS [13,14]. Thus, medical management of irradiation must address the risk associated with ARS [15-18].

NEED FOR RADIATION COUNTER MEASURES, PAST EFFORTS AND CURRENT CHALLENGES

Medical management of radiation injuries thus is a complex problem and much of the knowledge is based on clinical experiences from radiotherapy patients, actual accidental exposure cases are rare and therefore appropriate guidelines required to be followed. Radiation exposure in unplanned situations (nuclear accidents) are often unavoidable for emergency responders. Understanding of radiobiology and demonstration of chemical compounds that can protect cells if introduced prior to radiation with ample demonstrations in small animal models convinced possibility of developing radiation countermeasure agents. Strategies for development of radioprotectors for radiation emergency operations, radiation workers and even patients undergoing radiotherapy are necessary. Thus, for all such scenarios, controlled or uncontrolled, where radiation exposure is anticipated, using a pharmacological agent (radioprotector) is most prudent strategy, to prevent deleterious effects to human being. Such approach (using radioprotector) would be of large utility in clinical interventions (e.g., diagnostic imaging, radiotherapy), for occupational workers and to a great extent for first responders in radiation accidents/ terror attacks.

At present no radioprotector is approved for planned exposure scenarios. Undertaking military operations in combat zones with radiation environment is another area where radioprotectors are necessary for protection of soldiers health. Radioprotector will also be useful for enhancing therapeutic efficacy of radiotherapy by providing protection to surrounding normal tissues. Radiation countermeasures fall into three broad classes: protectors, mitigators and therapeutics. Radioprotectors are administered before exposure to prevent damage. Radiation mitigators are to be administered after radiation exposure, that is before exposure symptoms manifest, to accelerate recovery or repair. Radiation therapeutics or treatments are given after symptoms manifest to stimulate repair or regeneration [19-21].

Radioprotector development is an important area of radiation countermeasure program. It is envisaged that by the use of safe radioprotector as single prophylactic dose near-term mortality can be reduced and restrict radiation-induced damage that cause long/short-term adverse health effects. Also, it could be useful in ameliorating the harmful effects of the radiotherapy and permitting the safe uses of higher doses of radiation [21,23]. There is an urgent need for radiation countermeasure development that are safe and effective for human use. Until now, only Amifostine (WR2721) is reported to be developed as radioprotector, but it causes severe toxicity in human, and hence, was restricted to head and neck cancer radiotherapy as cytoprotective approved by USFDA [24,25]. However, in last five decades, numerous chemical and biological molecules have been evaluated through screening and assessment in animal models (mostly for radioprotectors) using both in-vitro and in-vivo models [22,26]. To date no radiation countermeasure is available/approved by USFDA for ARS in humans [27,28].

Concerted efforts through Radiation countermeasure program and important role played by Armed forces radiobiology research institute few molecules have reached investigational new drug status and ready for further evaluation [29]. Hence, the urgent need for the development of radioprotector, that can prevent or reduce the radiation associated damage, has provoked the research presented here to focus on the development of melatonin and sesamol as radioprotectors. Nevertheless, the described molecules are reported antioxidant candidates for development as "dual utility" drugs, that is it could be used both as radiation prophylaxis and mitigative/ therapeutics to make radiation therapy safer and/or more effective. Antioxidants offer several advantages over the range of other chemical and biological radioprotective agents. They are readily available in the market with low toxicity over a wide range of dosage; they are potentially attenuating radiation-induced chromosomal aberration, DNA damage, mutagenesis, transformation and the clastogenicity [30-32].

Melatonin (N-acetyl-5-methoxytryptamine) is a potential natural antioxidant and chief secretory product of pineal gland in the brain. It has many important physiological and pharmacological roles discovered and reported [33]. Other than conventional role in circadian rhythm[34], it is found to have roles in immune functions[35-37], cancer therapy [38,39], intractable epilepsy[40], neurodegenerative disorders [41,43] such as Alzheimer's, Parkinson's and Huntington's disease [42], nutritional antioxidant [43-45] and radioprotection [46,47] etc. A plethora of investigation suggests that melatonin pre-treatment protects biological molecules from oxidative injury caused by free-radicals including hydroxyl, peroxyl, lipid-peroxyl radicals, singlet oxygen, hydrogen peroxide, nitric oxide (NO), peroxy nitrite anions [48]. Further, melatonin plays vital role in scavenging free radicals, destroying toxic reactive oxygen species (ROS) and reactive nitrogen species (RNS) directly (receptor-independent manner) and indirectly (by increasing expression and activity of antioxidative enzymes; SOD,

GST, CAT, GPx) as well as by inhibiting the action of prooxidant enzyme (nitric oxide synthase) [49-53].

Another molecule, sesamol (3, 4-methylenedioxophenol) is an antioxidant form sesame oil [54,55]. It has reported to decrease radiation-induced micronuclei, dicentric counts, thiobarbituric acid reactive substances (TBARS), and increases GSH, SOD, CAT and GPx [56-58]. Sesamol also prevents radiation induced lethality in WBI mice by inhibiting lymphocytes DNA strand breaks, splenic injury, gastrointestinal injury, lipid peroxidation and increasing antioxidants enzymes levels (GSH, GST, CAT) [57,59]. Sesamol and melatonin have strong antiradical scavenging properties in comparison to other reference antioxidants molecules [60].

RESULT AND DISCUSSION

Radiation exposure caused 7 fold increase in the TUNEL+ cells, while treatment with melatonin was able to reduce it (radiation induced TUNEL +cells) by 2.2 folds while sesamol reduced it by 1.5 fold. The combination treatment (ses+mel) reduced the same by 3.1 fold, on day 6th of radiation treatment. The results of this study demonstrated the beneficial effects of ses+mel on gastrointestinal microenvironment by protecting the epithelial cells. Apoptosis, [324] a major cell death type induced by radiation, initiates following the DNA damage turns out to be irreparable. Intestinal crypt epithelial cells are prone to apoptosis following IR exposure because the intestinal epithelium is one of the fastest proliferating tissues in the body. Ses+mel treatment effectively reduced IR-induced apoptosis as shown by TUNEL and Goblet cell count as well. Apart from apoptosis, the studies have identified immediate DNA damage protection, induced by IR, to be important for cell survival. Mechanistically, ses+mel not only prevent DNA damage but also enhance the total antioxidant capacity and expression of antioxidant enzymes in irradiated mice. Though the efficacy of individual treatment of sesamol and melatonin are in line with the previously reported studies through i.p route [61-66] and oral route for sesamol [67], but, the combination ses+mel provides an added advantage over individual melatonin and sesamol.

CONCLUSION

Analysis of results depicted that both the Melatonin and Sesamol markedly protected from the radiation induced injury.

REFERENCES

1. Hall EJ, Giaccia AJ. Radiobiology for the radiologist [Internet]. Lippincott Williams & Wilkins; 2006. 546 p. Available from: https://books.google.co.in/books/about/Radiobiology_for_the_Radiologist.html?id=6HhjwRyqBzgC
2. Thariat J, Hannoun-Levi J-M, Sun Myint A, Vuong T, Gérard J-P. Past, present, and future of radiotherapy for the benefit of patients. *Nat Rev Clin Oncol* [Internet]. 2013 Jan;10(1):52–60. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/23183635>
3. Sansare K, Khanna V, Karjodkar F. Early victims of X-rays: A tribute and current perception. *Dentomaxillofacial Radiol* [Internet]. 2011 [cited 2020 Aug 14];40(2):123–5. Available from: [/pmc/articles/PMC3520298/?report=abstract](https://pmc.ncbi.nlm.nih.gov/articles/PMC3520298/?report=abstract)
4. Cerezo L. Radiation accidents and incidents. What do we know about the medical management of acute radiation syndrome? [Internet]. Vol. 16, *Reports of Practical Oncology and Radiotherapy*. Urban and Partner; 2011 [cited 2020 Aug 14]. p. 119–22. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863134/>
5. Meineke V, Dörr H. The fukushima radiation accident: Consequences for radiation accident medical management. In: *Health Physics* [Internet]. 2012. p. 217–20. Available from: <http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004032-201208000-00017>
6. Dörr H, Meineke V. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles. *BMC Med* [Internet]. 2011 Nov 25 [cited 2018 Sep 25];9:126. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/22114866>
7. Hamada N, Fujimichi Y. Classification of radiation effects for dose limitation purposes: History, current situation and future prospects. *J Radiat Res*. 2014;55(4):629–40. 7a. International Atomic Energy Agency V. Medical Management of Radiation Injuries [Internet]. 2020 [cited 2021 Jun 8]. Available from: www.iaea.org/publications
8. Soto-Pantoja DR, Ridnour L a, Wink D a, Roberts DD. Blockade of CD47 increases survival of mice exposed to lethal total body irradiation. *Sci Rep* [Internet]. 2013;3:1038. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC359147/?tool=pmcentrez&rendertype=abstract>
9. Acosta R, Warrington SJ. Radiation, Syndrome Acute [Internet]. *StatPearls*. StatPearls Publishing; 2018 [cited 2018 Aug 16]. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/28722960>
10. Dörr H, Meineke V. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles [Internet]. Vol. 9, *BMC Medicine*. BioMed Central Ltd; 2011. p. 126. Available from: <http://www.biomedcentral.com/1741-7015/9/126>
11. Koenig KL, Goans RE, Hatchett RJ, Mettler FA, Schumacher TA, Noji EK, et al. Medical treatment of radiological casualties: current concepts. *Ann Emerg Med* [Internet]. 2005 Jun;45(6):643–52. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/15940101>
12. Singh VK, Romaine PLP, Seed TM. Medical Countermeasures for Radiation Exposure and Related Injuries: Characterization of Medicines, FDA-Approval Status and Inclusion into the Strategic National Stockpile. *Health Phys* [Internet]. 2015 Jun;108(6):607–30. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/25905522>
13. Coleman CN, Blakely WF, Fike JR, MacVittie TJ, Metting NF, Mitchell JB, et al. Molecular and cellular

biology of moderate-dose (1-10 Gy) radiation and potential mechanisms of radiation protection: report of a workshop at Bethesda, Maryland, December 17-18, 2001. *Radiat Res* [Internet]. 2003 Jun [cited 2018 Aug 16];159(6):812-34. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/12751965>

14. Hérodin F, Grenier N, Drouet M. Revisiting therapeutic strategies in radiation casualties. *Exp Hematol*. 2007;35(4 SUPPL.):28-33.

15. Stone HB, Moulder JE, Coleman CN, Ang KK, Anscher MS, Barcellos-Hoff MH, et al. Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3-4, 2003. *Radiat Res* [Internet]. 2004 Dec;162(6):711-28. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/15548121>

16. Hérodin F, Drouet M. Cytokine-based treatment of accidentally irradiated victims and new approaches. *Exp Hematol*. 2005;33(10):1071-80.

17. Singh VK, Ducey EJ, Brown DS, Whitnall MH. A review of radiation countermeasure work ongoing at the Armed Forces Radiobiology Research Institute. *Int J Radiat Biol*. 2012;88(4):296-310.

18. Mettler FA. Protecting people against radiation exposure in the event of a radiological attack. *Ann ICRP*. 2005;35(1).

19. Singh VK, Romaine PL, Newman VL. Biologics as countermeasures for acute radiation syndrome: where are we now? *Expert Opin Biol Ther* [Internet]. 2015;15(4):465-71. Available from: <http://www.tandfonline.com/doi/full/10.1517/14712598.2015.986453>

20. Dumont H, Istance D. Future directions for learning environments in the 21st century. In: 2010. p. 317-38. Available from: <http://www.oecd.org/education/ceri/50300814.pdf>

21. Prasanna PGS, Stone HB, Wong RS, Capala J, Bernhard EJ, Vikram B, et al. Normal tissue protection for improving radiotherapy: Where are the Gaps? *Transl Cancer Res* [Internet]. 2012;1(1):35-48. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/228662450Ahttp://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=PMC3411185>

22. Singh VK, Newman VL, Romaine PLP, Wise SY, Seed TM. Radiation countermeasure agents: an update (2011-2014). *Expert Opin Ther Pat* [Internet]. 2014 Nov;24(11):1229-55. Available from: <http://www.tandfonline.com/doi/full/10.1517/13543776.2014.964684>

23. Singh VK, Ducey EJ, Brown DS, Whitnall MH. A review of radiation countermeasure work ongoing at the Armed Forces Radiobiology Research Institute. *Int J Radiat Biol* [Internet]. 2012 Apr;88(4):296-310. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/22191567>

24. Soref CM, Hacker TA, Fahl WE. A new orally active, aminothiolradioprotector-free of nausea and hypotension side effects at its highest radioprotective doses. *Int J Radiat Oncol Biol Phys*. 2012;82(5).

25. Culy CR, Spencer CM. Amifostine: An update on its clinical status as a cytoprotectant in patients with cancer receiving chemotherapy or radiotherapy and its potential therapeutic application in myelodysplastic syndrome [Internet]. Vol. 61. *Drugs*. 2001 [cited 2020 Apr 11]. p. 641-84. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/11368288>

26. Prasanna PGS, Narayanan D, Hallett K, Bernhard EJ, Ahmed MM, Evans G, et al. Radioprotectors and Radiomitigators for Improving Radiation Therapy: The Small Business Innovation Research (SBIR) Gateway for Accelerating Clinical Translation. *Radiat Res* [Internet]. 2015 Sep [cited 2018 Sep 25];184(3):23548. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/26284423>

27. Augustine AD, Gondré-Lewis T, McBride W, Miller L, Pellmar TC, Rockwell S. Animal models for radiation injury, protection and therapy. *Radiat Res* [Internet]. 2005 Jul [cited 2018 Aug 16];164(1):100-9. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/15966769>

28. Singh VK, Newman VL, Berg AN, MacVittie TJ. Animal models for acute radiation syndrome drug discovery. *Expert Opin Drug Discov* [Internet]. 2015;10(5):497-517. Available from: <http://www.tandfonline.com/doi/full/10.1517/17460441.2015.1023290>

29. Radiological and Nuclear Emergency Preparedness Information from FDA| FDA [Internet]. [cited 2020 Aug 15]. Available from: <https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/radiological-and-nuclear-emergency-preparedness-information-fda#mcm>

30. Weiss JF, Landauer MR. History and development of radiation-protective agents. *Int J Radiat Biol*. 2009;85(7):539-73.

31. Weiss JF, Landauer MR. Radioprotection by antioxidants. *Ann N Y Acad Sci* [Internet]. 2000;899:44-60. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/10863528>

32. Weiss JF, Landauer MR. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. *Toxicology* [Internet]. 2003 Jul 15 [cited 2017 Sep 28];189(1-2):1-20. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/12821279>

33. Chowdhury I, Sengupta A, Maitra SK. Melatonin: Fifty years of scientific journey from the discovery in bovine pineal gland to delineation of functions in human. *Indian J Biochem Biophys*. 2008;45(5):289-304.

34. Vural EMS, van Munster BC, de Rooij SE. Optimal dosages for melatonin supplementation therapy in older adults: a systematic review of current literature. *Drugs Aging* [Internet]. 2014;31(6):441-51. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/24802882>

35. Espino J, Pariente J a, Rodríguez AB. Oxidative stress and immunosenescence: Therapeutic effects of melatonin. *Oxid Med Cell Longev*. 2012;2012.

36. Carrillo-Vico A, Lardone PJ, Álvarez- - Guerrero JM. Melatonin: Buffering the immune system. *Int J Mol Sci*. 2013;14(4):8638-83.

37. Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL. 2011: The immune hallmarks of cancer. In: *Cancer Immunology, Immunotherapy*. 2011. p. 31926.

38. Cutando A, Aneiros-Fernández J, Aneiros-Cachaza J, Arias-Santiago S. Melatonin and cancer: Current knowledge and its application to oral cavity tumours. *J Oral Pathol Med*. 2011;40(8):593 7.

39. Cutando A, López-Valverde A, Arias-Santiago S, De Vicente J, De Diego RG. Role of melatonin in cancer treatment [Internet]. Vol. 32, *Anticancer Research*. 2012 [cited 2016 Dec 16]. p. 2747 54. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/22753734>

40. Goldberg-Stern H, Oren H, Peled N, Garty B-Z. Effect of Melatonin on Seizure Frequency in Intractable Epilepsy: A Pilot Study. *J Child Neurol* [Internet]. 2012 Dec 1 [cited 2016 Dec 16];27(12):1524 8. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/22378657>

41. Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B, Hardeland R. sease and other neurodegenerative disorders. *Behav Brain Funct*. 2006;2:15.

42. Lin L, Huang QX, Yang SS, Chu J, Wang JZ, Tian Q. Melatonin in Alzheimer's disease. *Int J Mol Sci*. 2013;14(7):14575 93.

43. Tan DX, Zanghi BM, Manchester LC, Reiter RJ. Melatonin identified in meats and other food stuffs: Potentially nutritional impact. *J Pineal Res*. 2014;57(2):213 8.

44. Iriti M, Varoni EM. Melatonin in Mediterranean diet, a new perspective. *J Sci Food Agric* [Internet]. 2015 Sep [cited 2016 Dec 16];95(12):2355 9. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/25501293>

45. Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan D-X. Melatonin: An Established Antioxidant Worthy of Use in Clinical Trials. *Mol Med*. 2009;15(1 2):43 50.

46. Vijayalaxmi, Reiter RJ, Herman TS, Meltz ML. Melatonin and radioprotection from genetic damage: In vivo/in vitro studies with human volunteers. *Mutat Res - Genet Toxicol*. 1996;371(3 4):221 8.

47. Blickenstaff RT, Brandstatter SM, Reddy S, Witt R. Potential Radioprotective Agents. 1. Homologs of Melatonin. *J Pharm Sci* [Internet]. 1994 Feb 1 [cited 2017 Aug 9];83(2):216 8. Available from: <http://linkinghub.elsevier.com/retrieve/pii/S0022354915493608>

48. Vijayalaxmi, Reiter RJ, Tan D-XX, Herman TS, Thomas CR. Melatonin as a radioprotective agent: A review. *Int J RadiatOncolBiolPhys* [Internet]. 2004 Jul 1 [cited 2017 Sep 28];59(3):639 53. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/15183467>

49. Allegra M, Reiter RJ, Tan D-X, Gentile C, Tesoriere L, Livrea MA. TheChemistry of melatonin interaction with reactive species *J Pineal Res* [Internet]. 2003 Jan [cited 2018 Aug 16];34(1):1 10. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/12485365>

50. Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. *J Pineal Res* [Internet]. 2015 Nov [cited 2017 May 15];59(4):403 19. Available from: <http://doi.wiley.com/10.1111/jpi.12267>

51. Tomás-Zapico C, Coto-Montes A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidant enzymes. *J Pineal Res* [Internet]. 2005 Sep 15 [cited 2018 Apr 12];39(2):99 104. Available from: <http://doi.wiley.com/10.1111/j.1600-079X.2005.00248.x>

52. Reiter RJ, Tan D, Osuna C, Gitto E. Actions of Melatonin in the Reduction of Oxidative Stress. *J Biomed Sci* [Internet]. 2000;7(6):444 58. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/11060493>

53. Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. *J Pineal Res* [Internet]. 2004 Jan [cited 2018 Apr 12];36(1):1 9. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/14675124>

54. Ando K, Sako K, Takahashi M, Beppu M, Kikugawa K. Increased band 3 protein aggregation and anti-band 3 binding of erythrocyte membranes on treatment with sesamol. *Biol Pharm Bull* [Internet]. 2000 Feb [cited 2018 Aug 16];23(2):159 64. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/10706378>

55. Budowski P. Sesame oil. III. Antioxidant properties of sesamol. *J Am Oil Chem Soc*. 1950 Jul;27(7):264 7.

56. Prasad, NR, Menon, VP, Vasudev V PK V. Radioprotective effect of sesamol on gamma radiation induced DNA damage, lipid peroxidation and antioxidants levels in cultured human lymphocytes N. *Toxicology*. 2005;209(1 2):225 35.

57. Parihar VK, Prabhakar KR, Veerapur VP, Sudheer Kumar M, Reddy YR, Joshi R, et al. Effect of sesamol on radiation-induced cytotoxicity in Swiss albino mice. *Mutat Res*. 2006;611:9 16.

58. Chennuru A, Saleem MTS. Antioxidant, lipid lowering, and membrane stabilization effect of sesamol against doxorubicin-induced cardiomyopathy in experimental rats. *Biomed Res Int* [Internet]. 2013 [cited 2018 Sep 16];2013:934239. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/24228260>

59. Kanimozh P, Prasad NR. Antioxidant potential of sesamol and its role on radiation-induced DNA damage in whole-body irradiated Swiss albino mice. *Environ Toxicol Pharmacol*. 2009 Sep;28(2):192 7.

60. Mishra K, Ojha H, Chaudhury NK. Estimation of antiradical properties of antioxidants using DPPH - assay: A critical review and results. *Food Chem*. 2012;130(4):1036 43.

61. Kumar A, Selvan TG, Tripathi AM, Choudhary S, Khan S, Adhikari JS, et al. Sesamol attenuates genotoxicity in bone marrow cells of whole-body γ -irradiated mice. *Mutagenesis*. 2015;30(5):651 61.

62. Khan S, Kumar A, Adhikari JS, Rizvi MA, Chaudhury NK. Protective effect of sesamol against 60 γ -ray-induced hematopoietic and gastrointestinal injury in C57BL/6 male mice. *Free Radic Res* [Internet]. 2015 Nov;49(11):134461. Available from: <http://www.tandfonline.com/doi/full/10.3109/10715762.2015.1071485>

63. Khan S, Adhikari JS, Rizvi MA, Chaudhury NK. Melatonin attenuates 60 Co γ -ray-induced hematopoietic, immunological and gastrointestinal injuries in C57BL/6 male mice. *Environ Toxicol* [Internet]. 2016 Mar [cited 2016 Dec 16];n/a-n/a. Available from: <http://doi.wiley.com/10.1002/tox.22254>

64. Kumar A, Choudhary S, Adhikari JS, Chaudhury NK. Sesamol ameliorates radiation induced DNA damage in hematopoietic -irradiated mice. Environ Mol Mutagen [Internet]. 2018 Jan;59(1):79–90. Available from: <http://doi.wiley.com/10.1002/em.22118>

65. Mishra K, Srivastava PS, Chaudhury NK. Sesamol as a potential radioprotective agent: in vitro studies. Radiat Res [Internet]. 2011 Nov;176(5):613–23. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/21899433>

66. Khan S, Kumar a, Adhikari JS, Rizvi M a, Chaudhury NK. Protective effect of sesamol against Co gamma-ray-induced hematopoietic and gastrointestinal injury in C57BL/6 male mice. Free Radic Res. 2015;(August 2015):1–57.

67. Majdaeen M, Banaei A, Abedi-Firouzjah R, EbrahimnejadGorji K, Ataei G, Momeni F, et al. Investigating the radioprotective effect of sesamol oral consumption against gamma irradiation in mice by micronucleus and alkaline comet assays. ApplRadiatIsot [Internet]. 2020 May 1 [cited 2020 Nov 16];159. Available from: <https://pubmed.ncbi.nlm.nih.gov/32250765/>